Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37754596

RESUMO

The microbiome has emerged as a key determinant of human health and reproduction, with recent evidence suggesting a dysbiotic microbiome is implicated in adverse perinatal health outcomes. The existing research has been limited by the sample collection and timing, cohort design, sample design, and lack of data on the preconception microbiome. This prospective, longitudinal cohort study will recruit 2000 Australian women, in order to fully explore the role of the microbiome in the development of adverse perinatal outcomes. Participants are enrolled for a maximum of 7 years, from 1 year preconception, through to 5 years postpartum. Assessment occurs every three months until pregnancy occurs, then during Trimester 1 (5 + 0-12 + 6 weeks gestation), Trimester 2 (20 + 0-24 + 6 weeks gestation), Trimester 3 (32 + 0-36 + 6 weeks gestation), and postpartum at 1 week, 2 months, 6 months, and then annually from 1 to 5 years. At each assessment, maternal participants self-collect oral, skin, vaginal, urine, and stool samples. Oral, skin, urine, and stool samples will be collected from children. Blood samples will be obtained from maternal participants who can access a study collection center. The measurements taken will include anthropometric, blood pressure, heart rate, and serum hormonal and metabolic parameters. Validated self-report questionnaires will be administered to assess diet, physical activity, mental health, and child developmental milestones. Medications, medical, surgical, obstetric history, the impact of COVID-19, living environments, and pregnancy and child health outcomes will be recorded. Multiomic bioinformatic and statistical analyses will assess the association between participants who developed high-risk and low-risk pregnancies, adverse postnatal conditions, and/or childhood disease, and their microbiome for the different sample types.


Assuntos
COVID-19 , Gravidez , Feminino , Humanos , Criança , Estudos Prospectivos , Estudos Longitudinais , Austrália/epidemiologia , Período Pós-Parto
2.
Med Mycol ; 60(1)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34698858

RESUMO

Pneumocystis jirovecii is associated with non-noxious colonization or severe pneumonia in immunocompromised hosts. Epidemiological investigations have been hampered by the lack of a standardized typing scheme. Thus, only partial molecular data on Spanish P. jirovecii cases are available. Recently, a new ISHAM consensus multilocus sequence typing scheme (MLST) targeting ß-TUB, mt26S, CYB, and SOD with a publicly accessible database has been launched to overcome this problem. The molecular epidemiology of P. jirovecii from immunocompromised patients either colonized (n = 50) or having pneumonia (n = 36) seen between 2014 and 2018 at a single center in Barcelona, Spain, was studied. The new ISHAM consensus MSLT scheme was used to investigate the local epidemiology and identify possible unnoticed outbreaks. Mutations in the DHPS gene, not included in the scheme but giving information about potential sulfa treatment failure, were also studied. The study assigned 32 sequence types (ST) to 72.2% pneumonia and 56% colonization cases. The most frequent STs were ST21 (18.5%), ST22 (14.8%), and ST37(14.8%). For non-unique STs, ST3, ST30 and ST31 were found only in pneumonia cases, whereas ST27 was associated exclusively to colonizations. Despite 38 patients sharing similar STs, only two were involved in a potential cross transmission event. No DHPS mutations were identified. The new consensus typing scheme was useful to ascertain the molecular epidemiology of P. jirovecii in our center revealing a high genetic diversity and the potential association of specific STs to colonization and pneumonia cases. LAY SUMMARY: A newly described MLST scheme aims at providing a standardized tool to study and compare Pneumocystis jirovecii epidemiology. A high diversity among P. jirovecii isolates from patients in Barcelona, Spain, and a potential association between specific STs and infection/colonization were identified.


Assuntos
Pneumocystis carinii , Pneumonia por Pneumocystis , Animais , Tipagem de Sequências Multilocus/veterinária , Mutação , Pneumocystis carinii/genética , Pneumonia por Pneumocystis/epidemiologia , Pneumonia por Pneumocystis/veterinária , Centros de Atenção Terciária
3.
J Fungi (Basel) ; 6(4)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143112

RESUMO

Pneumocystis jirovecii is an opportunistic human pathogenic fungus causing severe pneumonia mainly in immunocompromised hosts. Multilocus sequence typing (MLST) remains the gold standard for genotyping of this unculturable fungus. However, the lack of a consensus scheme impedes a global comparison, large scale population studies and the development of a global MLST database. To overcome this problem this study compared all genetic regions (19 loci) currently used in 31 different published Pneumocystis MLST schemes. The most diverse/commonly used eight loci, ß-TUB, CYB, DHPS, ITS1, ITS1/2, mt26S and SOD, were further assess for their ability to be successfully amplified and sequenced, and for their discriminatory power. The most successful loci were tested to identify genetically related and unrelated cases. A new consensus MLST scheme consisting of four genetically independent loci: ß-TUB, CYB, mt26S and SOD, is herein proposed for standardised P. jirovecii typing, successfully amplifying low and high fungal burden specimens, showing adequate discriminatory power, and correctly identifying suspected related and unrelated isolates. The new consensus MLST scheme, if accepted, will for the first time provide a powerful tool to investigate outbreak settings and undertake global epidemiological studies shedding light on the spread of this important human fungal pathogen.

4.
Med Mycol ; 58(5): 650-660, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31758176

RESUMO

The advent of next generation sequencing technologies has enabled the characterization of the genetic content of entire communities of organisms, including those in clinical specimens, without prior culturing. The MinION from Oxford Nanopore Technologies offers real-time, direct sequencing of long DNA fragments directly from clinical samples. The aim of this study was to assess the ability of unbiased, genome-wide, long-read, shotgun sequencing using MinION to identify Pneumocystis jirovecii directly from respiratory tract specimens and to characterize the associated mycobiome. Pneumocystis pneumonia (PCP) is a life-threatening fungal disease caused by P. jirovecii. Currently, the diagnosis of PCP relies on direct microscopic or real-time quantitative polymerase chain reaction (PCR) examination of respiratory tract specimens, as P. jirovecii cannot be cultured readily in vitro. P. jirovecii DNA was detected in bronchoalveolar lavage (BAL) and induced sputum (IS) samples from three patients with confirmed PCP. Other fungi present in the associated mycobiome included known human pathogens (Aspergillus, Cryptococcus, Pichia) as well as commensal species (Candida, Malassezia, Bipolaris). We have established optimized sample preparation conditions for the generation of high-quality data, curated databases, and data analysis tools, which are key to the application of long-read MinION sequencing leading to a fundamental new approach in fungal diagnostics.


Assuntos
Metagenômica/métodos , Pneumocystis carinii/classificação , Pneumocystis carinii/genética , Pneumonia por Pneumocystis/diagnóstico , Líquido da Lavagem Broncoalveolar/microbiologia , DNA Fúngico , Genoma Fúngico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Micobioma/genética , Nanoporos , Pneumonia por Pneumocystis/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Sistema Respiratório/microbiologia , Sensibilidade e Especificidade , Escarro/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...